在距离度量学习网络的培训期间,典型损耗函数的最小值可以被认为是满足由训练数据施加的一组约束的“可行点”。为此,我们将距离度量学习问题重构为查找约束集的可行点,其中训练数据的嵌入向量满足所需的类内和帧间接近度。由约束集引起的可行性集被表示为仅针对训练数据的特定样本(来自每个类别的样本)强制执行接近约束的宽松可行集合。然后,通过在那些可行的组上执行交替的投影来大致解决可行点问题。这种方法引入了正则化术语,并导致最小化具有系统批量组结构的典型损失函数,其中这些批次被约束以包含来自每个类的相同样本,用于一定数量的迭代。此外,这些特定样品可以被认为是阶级代表,允许在批量构建期间有效地利用艰难的挖掘。所提出的技术应用于良好的损失,并在斯坦福在线产品,CAR196和CUB200-2011数据集进行了评估,用于图像检索和聚类。表现优于现有技术,所提出的方法一致地提高了综合损失函数的性能,没有额外的计算成本,并通过硬负面挖掘进一步提高性能。
translated by 谷歌翻译
深度度量学习(DML)旨在最大程度地减少嵌入图像中成对内部/间阶层接近性违规的经验预期损失。我们将DML与有限机会限制的可行性问题联系起来。我们表明,基于代理的DML的最小化器满足了某些机会限制,并且基于代理方法的最坏情况可以通过围绕类代理的最小球的半径来表征,以覆盖相应类的整个域样本,建议每课多个代理有助于表现。为了提供可扩展的算法并利用更多代理,我们考虑了基于代理的DML实例的最小化者所隐含的机会限制,并将DML重新制定为在此类约束的交叉点中找到可行的点,从而导致问题近似解决。迭代预测。简而言之,我们反复训练基于代理的损失,并用故意选择的新样本的嵌入来重新定位代理。我们将我们的方法应用于公认的损失,并在四个流行的基准数据集上评估图像检索。优于最先进的方法,我们的方法一致地提高了应用损失的性能。代码可在以下网址找到:https://github.com/yetigurbuz/ccp-dml
translated by 谷歌翻译
在这项研究中,我们旨在提供出于语言动机的解决方案,以解决缺乏无效词素的代表性,高生产力的衍生过程和土耳其语中的融合词素的问题,而在Boun Treebank中没有与普遍的依赖关系框架不同。为了解决这些问题,通过将某些引理并在UD框架中使用MISC(其他)选项卡来表示新的注释约定来表示派生。在基于LSTM的依赖性解析器上测试了重新注释的树库的代表性功能,并引入了船工具的更新版本。
translated by 谷歌翻译